Цитаты на тему «Парадокс»

Трудно бежать в мешке. Вдвойне труднее - в мешке, набитом деньгами.

Для пешеходов всего мира желтый сигнал светофора означает «Стой, дальнейшее движение опасно для жизни» и только для нас - «Беги, если постараешься, должен успеть».

Любовь - это такая слабость, от которой сносит крышу.

Единственные гонки не на жизнь, а на смерть - гонки сперматозоидов.

Твой долг, это то, чего меньше всего хочется делать.

Всё в жизни происходит так: когда вы становитесь достаточно большим, чтобы дотянуться до горшочка с мёдом, вам этого уже не хочется.

Читающий газету Гриша:
- Прикинь, Сень, в Лондоне опять смог!
- Ну, что «смог», братан, хоть и сомнительно, но куда ни шло. Однако как ты в Лондон попал?! Да еще «опять»?!!

Если бы судьбу можно было свернуть в трубочку, то, заглянув в один ее конец, каждый бы на другом увидел свое будущее.

Тяжелее всего мы бываем наказаны осуществлением нашей мечты.

Две параллельные в пространстве пересекутся?
По идее - пересекутся, ведь Земля «круглая».
НО,
Но Земля совсем не круглая. Надеюсь сейчас не времена Галилея и никто уже не сомневается. что земля ,. ну скажем так - «не совсем круглая».
Тогда вопрос: А есть ли на Земле место, где проведя две параллельные прямые, то сколько их не продолжай, они никогда не пересекутся)) Это первый вопрос.

И второй вопрос. Параллельные могут идти по полям, обрывам. морям, горам и т. д. Одна прямая идущая по горам, а вторая параллельно ей идёт по ровному полю. Так вот, вторая (даже если и пересечется с первой) то в другое время. выходит, если принимать «прямые» не за черту, а за едимоментный предмет. то параллельные почти не имеют возможности вообще когда-либо пересечься?

. Парадокс Эватла

Это очень старая задача в логике, вытекающая из Древней Греции. Говорят, что знаменитый софист Протагор взял к себе на учение Эватла, при этом, он четко понимал, что ученик сможет заплатить учителю только после того, как он выиграет свое первое дело в суде.
Некоторые эксперты утверждают, что Протагор потребовал деньги за обучение сразу же после того, как Эватл закончил свою учебу, другие говорят, что Протагор подождал некоторое время, пока не стало очевидно, что ученик не прикладывает никаких усилий для того, чтобы найти клиентов, третьи же уверены в том, что Эватл очень старался, но клиентов так и не нашел. В любом случае, Протагор решил подать в суд на Эватла, чтобы тот вернул долг.
Протагор утверждал, что если он выиграет дело, то ему будут выплачены его деньги. Если бы дело выиграл Эватл, то Протагор по-прежнему должен был получить свои деньги в соответствии с первоначальным договором, потому что это было бы первое выигрышное дело Эватла.
Эватл, однако, стоял на том, что если он выиграет, то по решению суда ему не придется платить Протагору. Если, с другой стороны, Протагор выиграет, то Эватл проигрывает свое первое дело, поэтому и не должен ничего платить. Так кто же из мужчин прав?

Парадокс неожиданной казни

Судья говорит осужденному, что он будет повешен в полдень в один из рабочих дней на следующей неделе, но день казни будет для заключенного сюрпризом. Он не будет знать точную дату, пока палач в полдень не придет к нему в камеру. После, немного порассуждав, преступник приходит к выводу, что он сможет избежать казни.
Его рассуждения можно разделить на несколько частей. Начинает он с того, что его не могут повесить в пятницу, так как если его не повесят в четверг, то пятница уже не будет неожиданностью. Таким образом, пятницу он исключил. Но тогда, так как пятница уже вычеркнута из списка, он пришел к выводу, что он не может быть повешенным и в четверг, потому что если его не повесят в среду, то четверг тоже не будет неожиданностью.
Рассуждая аналогичным образом, он последовательно исключил все оставшиеся дни недели. Радостным он ложится спать с уверенностью, что казни не произойдет вовсе. На следующей неделе в полдень среды к нему в камеру пришел палач, поэтому, несмотря на все его рассуждения, он был крайне удивлен. Все, что сказал судья, сбылось.

Это образное описание человеческой нерешительности. Это относится к парадоксальной ситуации, когда осел, находясь между двумя абсолютно одинаковыми по размеру и качеству стогами сена, будет голодать до смерти, поскольку так и не сможет принять рациональное решение и начать есть.

Парадокс назван в честь французского философа 14 века Жана Буридана (Jean Buridan), однако, он не был автором парадокса.

Аристотель, в одном из своих трудов, рассказывает о человеке, который был голоден и хотел пить, но так как оба чувства были одинаково сильны, а человек находился между едой и питьем, он так и не смог сделать выбора.

Парадокс Ахиллеса и черепахи

В данном парадоксе Ахиллес бежит за черепахой, предварительно дав ей фору в 30 метров. Если предположить, что каждый из бегунов начал бежать с определенной постоянной скоростью (один очень быстро, второй очень медленно), то через некоторое время Ахиллес, пробежав 30 метров, достигнет той точки, от которой двинулась черепаха. За это время черепаха «пробежит» гораздо меньше, скажем, 1 метр.
Затем Ахиллесу потребуется еще какое-то время, чтобы преодолеть это расстояние, за которое черепаха продвинется еще дальше. Достигнув третьей точки, в которой побывала черепаха, Ахиллес продвинется дальше, но все равно не нагонит ее. Таким образом, всякий раз, когда Ахиллес будет достигать черепаху, она все равно будет впереди.
Таким образом, поскольку существует бесконечное количество точек, которых Ахиллес должен достигнуть, и в которых черепаха уже побывала, он никогда не сможет догнать черепаху. Конечно, логика говорит нам о том, что Ахиллес может догнать черепаху, потому это и является парадоксом.

Проблема этого парадокса заключается в том, что в физической реальности невозможно бесконечно пересекать поперечно точки - как вы можете попасть из одной точки бесконечности в другую, не пересекая при этом бесконечность точек? Вы не можете, то есть, это невозможно.
Но в математике это не так. Этот парадокс показывает нам, как математика может что-то доказать, но в действительности это не работает. Таким образом, проблема данного парадокса в том, что происходит применение математических правил для нематематических ситуаций, что и делает его неработающим.

Ума палата! Номер 6.